A matrix Method for Computing the Derivatives of Interval Uniform B-Spline Curves

نویسنده

  • O. Ismail
چکیده

The matrix forms for curves and surfaces were largely promoted in CAD. These formulations are very compact to write, simple to program, and clear to understand. They manifest the desired basis as a matrix transformation of the common power basis. Furthermore, this implementation can be made extremely fast if appropriate matrix facilities are available in either hardware or software. Derivatives are very important in computation in engineering practice on graphics structures. B-spline functions are defined recursive, so direct computation is very difficult. A method for obtaining the matrix representations of uniform B-splines and Bezier curves of arbitrary degrees have been presented in this paper. By means of the basis matrix, the matrix representations of uniform B-splines and Bezier curves are unified by a recursive formula. The four fixed uniform Kharitonov's polynomials (four fixed uniform B-spline curves) associated with the original interval uniform B-spline curve are obtained in matrix form. The fixed control points of the derivatives of the four fixed uniform Kharitonov's polynomials (four fixed uniform Bspline curves) are found. Finally the interval control points of the derivative of the interval B-spline curve is computed from the fixed control points of the derivatives of the four fixed uniform Kharitonov's polynomials (four fixed uniform Bspline curves). A numerical example is included in order to demonstrate the effectiveness of the proposed method. Index Term— Recursive matrix representations, interval B-spline curve, CAD, derivatives of B-spline curve, CAGD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degree Elevation of Interval B-Spline Curves

O. Ismail, Senior Member, IEEE Abstract— This paper presents an efficient method for degree elevation of interval B-spline curves. The four fixed Kharitonov's polynomials (four fixed B-spline curves) associated with the original interval B-spline curve are obtained. The method is based on the matrix identity. The B-spline basis functions are represented as linear combinations of the B-splines o...

متن کامل

NURBS-Based Isogeometric Analysis Method Application to Mixed-Mode Computational Fracture Mechanics

An interaction integral method for evaluating mixed-mode stress intensity factors (SIFs) for two dimensional crack problems using NURBS-based isogeometric analysis method is investigated. The interaction integral method is based on the path independent J-integral. By introducing a known auxiliary field solution, the mixed-mode SIFs are calculated simultaneously. Among features of B-spline basis...

متن کامل

A new approach to using the cubic B-spline functions to solve the Black-Scholes equation

Nowadays, options are common financial derivatives. For this reason, by increase of applications for these financial derivatives, the problem of options pricing is one of the most important economic issues. With the development of stochastic models, the need for randomly computational methods caused the generation of a new field called financial engineering. In the financial engineering the pre...

متن کامل

Local and Global Approaches to Fracture Mechanics Using Isogeometric Analysis Method

The present research investigates the implementations of different computational geometry technologies in isogeometric analysis framework for computational fracture mechanics. NURBS and T-splines are two different computational geometry technologies which are studied in this work. Among the features of B-spline basis functions, the possibility of enhancing a B-spline basis with discontinuities ...

متن کامل

Optimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves

In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015